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Assoc. Prof. Cetin Yilmaz

Asst. Prof. Bekir Bediz

Date:



To my beloved family and my love

iii



ABSTRACT

Laminated composite panels are extensively used in various industries due to their

high stiffness–to–weight ratio and directional properties that allow optimization of

stiffness characteristics for specific applications. With the recent improvements in

the manufacturing techniques, the technology trend has been shifting towards the

development of nonconventional composites. This work aims to develop new methods

for the design and optimization of nonconventional laminated composites. Lami-

nation parameters method is used to characterize laminate stiffness matrices in a

compact form. An optimization framework based on finite element analysis was de-

veloped to calculate the solutions for different panel geometries, boundary conditions

and load cases. The first part of the work addresses the multi–objective optimization

of composite laminates to maximize dynamic and load–carrying performances simul-

taneously. Conforming and conflicting behaviors of multiple objective functions are

investigated by determining Pareto–optimal solutions, which provide a valuable in-

sight for multi–objective optimization problems. In the second part, design of curved

laminated panels for optimal dynamic response is studied in detail. Firstly, the de-

signs yielding maximum fundamental frequency values are computed. Next, optimal

designs minimizing equivalent radiated power are obtained for the panels under har-

monic pressure excitation, and their effective frequency bands are shown. The rela-

tionship between these two design sets is investigated to study the effectiveness of the

frequency maximization technique. In the last part, a new method based on lamina-

tion parameters is proposed for the design of variable–stiffness composite panels. The

results demonstrate that the proposed method provides manufacturable designs with

smooth fiber paths that outperform the constant–stiffness laminates, while utilizing

the advantages of lamination parameters formulation.

iv



ÖZETÇE

Lamine kompozit paneller yüksek sertlik/ağırlık oranlarından ve sertlik özellikleri-

nin belirli uygulamalara özgü optimizasyonuna izin veren yönsel niteliklerinden dolayı

çeşitli endüstrilerde yaygın olarak kullanılmaktadır. Üretim tekniklerindeki son geliş-

melerle birlikte teknolojideki eğilim yenilikçi kompozitlerin geliştirilmesine doğru kay-

maktadır. Bu çalışma yenilikçi kompozitlerin dizaynı ve optimizasyonu için yeni

yöntemler geliştirmeyi amaçlamaktadır. Lamine sertlik matrislerinin kompakt bir

şekilde tanımlanması için laminasyon parametreleri yöntemi kullanılmaktadır. Çözüm-

leri farklı panel geometrileri, sınır koşulları ve yük durumlarına göre hesaplayabilmek

için sonlu elemanlar analizine dayalı bir optimizasyon sistemi geliştirilmiştir. Çalışma-

nın ilk kısmı dinamik ve yük taşıma performanslarının beraberce maksimize edilmesi

için kompozit panellerin çok amaçlı optimizasyonunu konu almaktadır. Birden çok

amaç fonksiyonunun uyumlu ve çelişen davranışları, çok amaçlı optimizasyon prob-

lemleri için değerli bir kavrayış sağlayan Pareto–optimal çözümlerin bulunmasıyla

araştırılmıştır. İkinci kısımda, kavisli lamine panellerin en iyi dinamik performans

için dizaynı detaylı olarak çalışılmaktadır. Öncelikle, en yüksek birinci doğal frekansı

sağlayacak dizaynlar belirlenmiştir. Daha sonra, harmonik basınç altındaki panellerin

eşdeğer güç yayımını minimize edecek en iyi dizaynlar belirlenmiş ve etkin frekans

aralıkları gösterilmiştir. Bu iki dizayn grubu arasındaki ilişki, frekans maksimizas-

yonu tekniğinin etkinliğini araştırmak için incelenmiştir. Son kısımda, değişken–

sertlikli kompozit panellerin dizaynı için laminasyon parametrelerine dayalı yeni bir

metot önerilmiştir. Sonuçlar önerilen metodun sabit–sertlikli laminelerden üstün ge-

len, düzgün fiber yörüngeli üretilebilir dizaynlar sağlarken; laminasyon parametreleri

formulasyonunun yararlarından da faydalandığını göstermektedir.
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thank my primary school teacher Selim Küçükkaraca and high school teacher Kurtuluş
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san, Emre Şendağ, Tiago Faria, Laszlo Kudela, Fatima Fakharian, Emin Oğuz İnci,
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Chapter 1

INTRODUCTION

1.1 Motivation

Laminated composites become increasingly widespread due to their high stiffness and

strength, low density and directional properties which offer additional potential for

design tailoring. These materials are particularly suitable for the construction of shell

structures, such as the panels of land, sea and air vehicles [Marsh, 2014].

With the recent improvements in the manufacturing techniques, the technol-

ogy trend has been shifting towards the development of nonconventional laminated

composites. These materials exhibit superior structural characteristics compared to

conventional laminates. Nonconventional laminates can be produced by using unre-

stricted fiber orientation angles rather than prescribed sets of available layers. More-

over, such laminates can have nonuniform fiber orientation angles across the laminate

domain and provide variable–stiffness properties.

One of the shortcomings of the laminate optimization approaches using number

of layers, layer thicknesses and angles is that, the solution depends on the initial

assumptions on the laminate configuration. As a remedy, lamination parameters

formulation has been utilized in various studies to describe the stiffness properties

in a compact form [Tsai and Hahn, 1980]. Even though there are many available

studies relying on the lamination parameters, several important points still need to

be addressed. These gaps in the literature are outlined in the following.

In multi-objective optimization problems, the optimal designs for different perfor-

mance metrics may be conflicting [Abouhamze and Shakeri, 2007], [Nik et al., 2012].



2 Chapter 1: Introduction

Therefore, it is essential to develop methodologies for multi-objective optimization of

composite laminated plates to determine the optimal parameters in the given design

space. Although Pareto-optimal solutions for multi-objective optimization of fiber-

reinforced composites have been studied in the literature, lamination parameters have

not been used as the parametrization technique in the existing studies.

In certain applications, laminated composite panels can be exposed to dynamic

excitation which may cause resonances leading to excessive vibrations or even failure

[Niu et al., 2010]. Attaining optimum dynamic response requires an elaborate de-

sign process since dynamic properties of the panels directly depend on the structural

parameters [Farshi and Rabiei, 2007]. Existing design studies, which use lamination

parameters formulation to optimize stiffness properties of the composite panels to im-

prove dynamic response, are restricted to modifying natural frequencies. Performance

of such panels under dynamic excitations has not been investigated in frequency do-

main using lamination parameters.

The potential of constant–stiffness laminates reach its limits for the enhancement

of operational performance. The existing values of the optimal responses can be fur-

ther improved by using variable–stiffness laminates [Gürdal and Olmedo, 1993]. For

variable–stiffness laminates, there are a few available design studies relying on lamina-

tion parameters. The studies show that, in the absence of manufacturing constraints,

resulting lamination parameter distribution can be very irregular complicating the

retrieval of an actual laminate configuration [Abdalla et al., 2007]. Utilization of

lamination parameters in an optimization framework which properly considers man-

ufacturing constraints is an active research topic, and the development of the new

methods addressing the problem is beneficial.

1.2 Contribution

The contribution of this study is threefold. Initially, a multi-objective design optimiza-

tion framework for dynamic and load-carrying requirements of laminated composite

plates is introduced. Laminate stiffness properties are represented and optimized
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using lamination parameters as design variables. Maximization of the fundamental

frequency, buckling load, and effective stiffness are chosen as the design objectives.

Pareto-optimal solutions are determined for the first time in the literature for different

combinations of design objectives using lamination parameters. Different panel aspect

ratios and load cases are considered. The results are visualized on Miki’s lamination

diagram to provide an insight into potential solutions for multi-objective optimization

problems. Significant changes in the trends of the optimal solutions in the lamination

parameters domain are demonstrated for different problem types.

Secondly, lamination parameters technique was utilized to examine the dynamic

response of flat and curved composite panels. Finite element analyses are performed

to investigate the individual and combined effects of varying panel aspect ratios, cur-

vatures and boundary conditions on the dynamic responses. Fundamental frequency

contours in lamination parameters domain are obtained for different sets of model

parameters. In addition, equivalent radiated power (ERP ) contours for the panels

excited by harmonic pressure are shown. Optimal laminate configurations providing

the best dynamic performance are determined by initially maximizing the funda-

mental frequencies, then minimizing ERP at different frequencies. The relationship

between the designs optimized for maximum fundamental frequency and minimum

ERP responses is investigated to study the effectiveness of the frequency maximiza-

tion technique. The results demonstrated the potential of using lamination parame-

ters technique in the design of flat/curved composite panels for the optimal dynamic

response, and provided valuable insight into the effect of various design parameters.

Lastly, a novel variable–stiffness laminate optimization technique that considers

the manufacturability of the composite panels is proposed. It constrains the de-

sign space which controls the direction of change for the lamination parameters and

subsequently leads a smooth change in the layer angles. The method differs from

the existing methods by its simplicity and provides an efficient mean to estimate

the required stiffness distributions within variable–stiffness composite panels. Finite

element analyses are used to calculate solutions for various panel geometries and
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boundary conditions. After finding optimal lamination parameter distributions, cor-

responding fiber orientations of the layers are also calculated. In addition to the

novelty of the proposed method, the eigenfrequency separation problem for curved

variable–stiffness panels is studied for the first time in the literature using lamination

parameters. The developed method is utilized to maximize the fundamental frequen-

cies of panels having different aspect ratios, curvatures and boundary conditions as

example cases. The results demonstrated that variable–stiffness designs with smooth

manufacturable fiber paths can be obtained and better performances can be achieved

compared to the constant–stiffness designs by utilizing the proposed method.

1.3 Outline

In the following chapter, the details of the panel models, lamination parameters for-

mulation and finite element analysis framework are provided. Chapter 3 addresses

multi–objective optimization of composite laminates to maximize the dynamic and

load–carrying performances simultaneously. Chapter 4 covers design of curved lami-

nated panels for optimal dynamic response including forced vibration. In Chapter 5,

a novel methodology for the design of variable–stiffness laminates is presented. The

conclusions and possible directions for future work are outlined in Chapter 6.
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PROBLEM DESCRIPTION

2.1 Panel Models

In Chapter 3 the calculations are done for flat laminated composite plates whose

schematics are depicted in Fig. 2.1. In Chapters 4 and 5 curved laminated panels

illustrated in Fig. 2.2 are considered.

Figure 2.1: Flat laminated composite plate.

Figure 2.2: Curved laminated composite panel.
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2.2 Lamination Parameters

2.2.1 Formulation

Lamination parameters were initially proposed by [Tsai and Hahn, 1980]. They allow

compact representation of the laminate configuration by approximating the overall

stiffness properties in terms of material invariants and lamination parameters. In-

stead of the number of plies, their relative thicknesses, and orientation angles; the

lamination parameters can be used as the design variables. Another attractive fea-

ture of lamination parameters is their convex solution space shown by [Grenestedt

and Gudmundson, 1993], which eliminates local optimality problems except for a few

cases such as forced vibration analysis [Serhat and Basdogan, 2016a].

Using the classical laminated plate theory, the constitutive equations for a lami-

nated composite plate are defined as [Gürdal et al., 1999]:

Nx

Ny

Nxy

Mx

My

Mxy


=

A B

B D





εx
0

εy
0

εxy
0

κx

κy

κxy


(2.1)

where Nx, Ny and Nxy are the force resultants per unit depth; Mx, My and Mxy are

the moment resultants per unit depth; ε0x, ε
0
y and ε0xy are the mid-plane strains; κx, κy

and κxy are the plate curvatures. A, B and D are in-plane stiffness, in-plane/bending

coupling and bending stiffness tensors, respectively, which can be formulated in terms

of the lamination parameters and material invariants. For balanced and symmetric

laminated plates, it is possible to model normalized in-plane stiffness tensor using

only two lamination parameter variables as follows [Gürdal et al., 1999]:

A

h
=


U1 U4 0

U4 U1 0

0 0 U5

+


U2 0 0

0 −U2 0

0 0 0

V1 +


U3 −U3 0

−U3 U3 0

0 0 −U3

V3 (2.2)
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where Vi are the normalized lamination parameters:

V1 =
1

h

Nl∑
k=1

tk2θk (2.3a)

V3 =
1

h

Nl∑
k=1

tk4θk (2.3b)

Nl, tk and θk are number of layers, layer thicknesses and layer angles, respectively.

Ui are the material invariants calculated using the following equation [Diaconu et al.,

2002]:

U1

U2

U3

U4

U5


=



3/8 3/8 1/4 1/2

1/2 −1/2 0 0

1/8 1/8 −1/4 −1/2

1/8 1/8 3/4 −1/2

1/8 1/8 −1/4 1/2





Q11

Q22

Q12

Q66


(2.4)

Qij are the reduced stiffness matrix entities given by

Q11

Q22

Q12

Q66


=



E1/γ

E2/γ

ν12E2/γ

G12


(2.5)

Here, E1, E2, G12 and ν12 are elastic modulus in the fiber direction, elastic modulus

perpendicular to the fiber direction, in-plane shear modulus and major Poisson’s ratio

of a uni-directional composite layer, respectively. γ = (1−ν12ν21) where reciprocity re-

lations for orthotropic layers require minor Poisson’s ratio to be: ν21 = ν12E2/E1. For

symmetric laminates in-plane/ bending coupling tensor is zero. Additionally, when

the laminate consists of a large number of balanced layers distributed homogenously

through the thickness, bending stiffness matrix satisfies the relation: D = Ah2/12.

Therefore, similar to A, D also becomes a function of V1 and V3 [Fukunaga and Van-

derplaats, 1991]. This is the assumption adopted in this study which results in a

reduced design space for D.
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2.2.2 Miki’s Lamination Diagram

Miki’s Lamination Diagram is a graphical tool to visualize the feasible domain of the

balanced and symmetric laminates [Miki, 1984]. In Fig. 2.3, the diagram is illustrated

with exemplary points for [0◦], [±45◦], and [90◦] and [0◦ ±45◦ 90◦] (quasi-isotropic)

laminates. The horizontal axis (V1) and the vertical axis (V3) are the normalized

lamination parameters. All the feasible design points need to be within the diagram.

The lower part of the feasible domain is bounded by the curve: V3 = 2V 2
1 − 1. Every

point on this curve is only achievable by a balanced symmetric laminate with one

distinct angle defined by

θ =
cos−1(V1)

2
(2.6)

The upper part is bounded by V3 = 1 line. The points on this line can be obtained

by different combinations of 0◦ and 90◦ layers.

Figure 2.3: Miki’s lamination diagram.

2.3 Responses

In this paper, fundamental natural frequencies, buckling loads and forced dynamic

responses are computed by using the developed in-house finite element analysis (FEA)
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software. This FEA framework allows establishing the connection between lamination

parameters and nodal stiffness matrices and performing the analyses repeatedly for

various cases. In the laminate modeling, 2D shell elements which can carry both

in-plane and bending loads are used. The analyses are performed to obtain solutions

for different plate aspect ratios, stiffness properties and boundary conditions.

2.3.1 Fundamental Frequency

Following element formulation, discretization and assembly processes; Newton’s sec-

ond law provides the following system of equations:

Ku+Mü = f (2.7)

where K is the global stiffness matrix, M is the global mass matrix; u, ü and f

are the nodal displacement, acceleration and force vectors, respectively. Then, the

natural frequencies of the plate (ωn) and corresponding mode shape vectors (un) can

be obtained by solving Eq. 2.8 and Eq. 2.9, respectively (Liu and Quek 2003):

det(K − ω2
nM) = 0 (2.8)

(K − ω2
nM)un = 0 (2.9)

2.3.2 Buckling Load

In buckling analyses, initially the geometric stiffness matrix Kg is computed using the

stress field obtained for the selected loading type. After that, the buckling parameter

λb can be obtained by solving the following eigenvalue equation [Anderson et al.,

1968]:

det(K − λbKg) = 0 (2.10)

The minimum eigenvalue is the critical buckling coefficient λcr which depends on

plate aspect ratio, loading case and material properties. The true buckling load can

be obtained by multiplying the critical buckling coefficient and the loading magnitude.

Therefore, for unit loading, the buckling load is equal to the λcr value.
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2.3.3 Equivalent Radiated Power (ERP)

In the analyses, the forced dynamic response of the composite panels with respect

to various parameters is studied. Equivalent radiated power (ERP ) is chosen as the

response of interest. ERP is a widely used performance metric for vibrating panels

which provides information about maximum possible acoustic radiation at the specific

excitation frequencies. It is the defined as the power of a vibrating panel radiated into

the surrounding media which can be calculated using the following equation [Fritze

et al., 2009]:

ERP =
1

2
ρfcf

∫
Ap

vfdAp (2.11)

where ρf , cf , vf and Ap are the fluid density, the speed of sound, particle velocity at

the structural surface and the panel area, respectively. Assuming the particle velocity

of the fluid vf to be equal to the normal velocity of the structure at its surface vs

and discretizing the integral into a summation formula for finite element analysis, Eq.

2.11 can be rewritten as follows [Fritze et al., 2009]:

ERP =
1

2
ρfcf

Ne∑
e=1

Aev
2
se (2.12)

where Ne, Ae and vse are the number of elements, elemental areas and the structural

velocity magnitudes at the center of each element, respectively.

In forced vibration analyses, structural damping method is used to account for

material damping. Using a structural damping coefficient η, the stiffness matrix

is modified as K∗ = K(iη + 1), where K∗ is the complex stiffness matrix providing

damping in addition to stiffness properties. When a complex harmonic loading f ∗ with

the circular frequency ω is applied to the system, corresponding complex displacement

vector u∗ can be obtained by solving:

(K∗ − ω2M)u∗ = f ∗ (2.13)

By differentiating u∗, the complex nodal velocity vector required for ERP calcu-

lations can be obtained as v∗ = iωu∗.
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2.3.4 Effective Stiffness

In lamination parameters domain, effective laminate stiffnesses in the x and y-directions

(E0
x and E0

y) can be obtained using (-) and (+) signs for (±)’s in Eq. 2.14, respectively,

which is given as follows (Gürdal et al. 1999):

E0
x + E0

y

2
±
E0
y − E0

x

2
=
U1

2 − U5
2 − U2

2V1
2 + 2(U1U5)U3V3

U1 ± U2V1 + U3V3

(2.14)

Similarly, effective shear stiffness can be written as (Gürdal et al. 1999)

G0
xy = U5 − V3U3 (2.15)

For the calculations, the stiffness metrics are normalized as Ex = E0
x/E1, Ey = E0

y/E2

and Gxy = G0
xy/G12. For uni-axial loading in x-direction, the minimization of strains

essentially implies maximization of Ex, which is the stiffness in the loading direction.

Similarly, bi-axial loading with Nx/Ny = 1 requires maximizing the normalized mean

stiffness: Ē = (Ex + Ey)/max(Ex + Ey). To attain minimum shear strain under

uniform shear stress, Gxy is maximized.
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MULTI–OBJECTIVE OPTIMIZATION OF LAMINATED

PLATES

Many composite stacking-sequence optimization studies are concerned with in-

creasing fundamental frequency, buckling load and effective stiffness. Maximization

of the fundamental frequency is used to reduce the dynamic response amplitudes of

the structures excited with the frequencies up to the fundamental frequency. In-

creasing buckling load is an important criterion used in the design of plate structures

carrying compressive loads. Maximizing the overall stiffness is essentially equivalent

to reducing the maximum strain which is a common design objective used to enhance

the integrity of load-carrying structures. In particular cases, simultaneous consider-

ation of a multiple of aforementioned metrics is required to improve both dynamic

and load-carrying performances. For instance, in the design of aircraft panels, max-

imization of fundamental frequency, buckling load and effective stiffness can be all

important.

There are many available optimization studies which take maximization of the

fundamental frequency as the design objective. For instance, [Bert, 1977] developed

a closed-form formula for simply-supported thin rectangular laminated plates based

on the classical lamination theory. He used it to maximize the fundamental frequency

of symmetric and balanced laminates by choosing fiber orientation angles as design

variables. [Narita and Robinson, 2006] conducted a layerwise optimization to ob-

tain the maximum fundamental frequency for laminated composite panels using Ritz

method to calculate the natural frequencies. [Apalak et al., 2008] calculated the fun-

damental frequencies of laminated composite plates using an artificial neural network

model which is trained by finite element analyses. They utilized a genetic algorithm
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to find optimal laminate configurations providing maximum frequencies for various

edge conditions.

Optimization of composite panels to increase buckling load is also extensively

covered in the literature. [Hirano, 1979] analyzed laminated plates with orthotropic,

equally thick layers subjected to uni-axial and bi-axial compression. He computed

optimal layer angles maximizing critical buckling load using an analytical relation for

different panel aspect ratios, number of layers and load ratios. [Hu and Lin, 1995]

investigated the effects of panel aspect ratio and boundary conditions on buckling

optimization of symmetrically laminated plates. They used finite element analyses

and sequential linear programming method to calculate the optimal responses. [Erdal

and Sonmez, 2005] determined optimum laminate stacking-sequences for maximum

laminate buckling load capacity using analytical expressions together with simulated

annealing algorithm. They were able to obtain a number of coequal optimal designs

using the search algorithm which circumvents termination at the local minima.

Overall stiffness maximization of laminated composites is similarly investigated

by many researchers. For example, [Kam and Lai, 1995] maximized the stiffness of

laminated composite plates by determining the optimal fiber angles and layer thick-

nesses. In their work, they used shear deformable finite elements and augmented

Lagrangian method for optimization. [Gürdal et al., 2008] introduced the concept of

using curvilinear fibers within the laminates which allows variable-stiffness proper-

ties. They employed a uni-directional variation based on a linear function to define

the fiber orientation angles of the individual layers. For flat rectangular composite

laminates, they calculated overall panel stiffness and buckling load for different design

parameters to demonstrate the trade-off between these responses.

In several studies, lamination parameters are used as design variables instead

of number of layers, layer angles, and thicknesses to formulate the problem in a

more compact way and avoid local optima. For maximization of the fundamental

frequency, [Fukunaga et al., 1994] performed layup optimization of symmetrically

laminated plates based on classical laminated plate theory (CLPT) by formulating
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the responses in terms of lamination parameters. [Diaconu et al., 2002] conducted a

similar study for thick panels by using First-order Shear Deformation Theory (FSDT)

and compared the results with the ones obtained via CLPT. [Abdalla et al., 2007] also

used lamination parameters in their optimization study to maximize the fundamental

frequency of variable-stiffness laminated plates. [Serhat and Basdogan, 2018] calcu-

lated the fundamental frequency contours of curved panels in lamination parameter

plane using finite element analyses. They investigated the combined effects of panel

aspect ratio, curvature and boundary conditions on the maximum frequency points.

Considering buckling, [Fukunaga et al., 1995] obtained the contours of uni-axial and

shear buckling loads for square plates, on the feasible region of lamination parameter

plane. [Grenestedt, 1991] found optimal lamination parameters providing maximum

buckling load for shear panels of various aspect ratios. [Ijsselmuiden et al., 2010]

also used lamination parameters to maximize buckling load but they extended the

approach for variable-stiffness panels. Regarding the maximum effective stiffness re-

quirements, [Fukunaga and Sekine, 1992] demonstrated the contours of in-plane and

coupling stiffness components for symmetric laminates as a function of lamination

parameters. They also proposed a method for determining laminate configurations

corresponding to the lamination parameters. [Miki and Sugiyama, 1993] used lami-

nation parameters for optimal stiffness design of orthotropic laminates. They showed

contour plots of strain energy within the feasible design space for plates undergoing

bending due to centrally applied concentrated load. They also calculated optimal

laminate configurations providing maximum bending stiffness as a function of plate

aspect ratio. [Setoodeh et al., 2006] investigated the optimal design of fiber reinforced

rectangular composite plates for minimum compliance design problem for variable-

stiffness laminates in lamination parameters space. They showed that significant

improvements in stiffness can be obtained compared to constant-stiffness designs by

using variable-stiffness laminates.

In multi-objective optimization studies, different metrics frequently require dif-

ferent optimal designs. On this matter, several multi-objective laminate optimiza-
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tion studies have been conducted to improve both dynamic and load-carrying per-

formance. For instance, [Kam and Chang, 1993] performed a layerwise optimization

study to find maximum buckling load and maximum vibration frequency for thick lam-

inated composite plates using FEM together with weighted-sum optimization method.

They investigated effects of side-to-thickness ratio, aspect ratio and numbers of layers

for simply-supported symmetrically and antisymmetrically laminated plates exposed

to uni-axial compression. [Abouhamze and Shakeri, 2007] also used weighted-sum

method for the maximization of first natural frequency and critical buckling load of

cylindrical panels. One shortcoming of weighted-sum optimization is obtaining only

a single solution instead of a set of nondominated solutions. As a more general ap-

proach, [Nik et al., 2012] carried out optimization studies to find Pareto-optimal solu-

tions for maximizing overall stiffness and buckling load of a composite laminate plate

with curvilinear fiber paths by varying the fiber orientations. They demonstrated the

conflicting behavior of overall stiffness and buckling load when they are used together

as the performance metrics. [Serhat et al., 2016] conducted a multi-objective lamina-

tion parameter optimization study to maximize fundamental frequency and effective

stiffness using weighted-sum optimization approach. They investigated the effects of

the weight coefficients on the optimal design points.

Although Pareto-optimal solutions for multi-objective optimization of fiber-reinforced

composites have been studied in the literature, lamination parameters have not been

used as the parametrization technique in the existing studies. In this chapter, a multi-

objective design optimization framework for dynamic and load-carrying requirements

of laminated composite plates is introduced. Laminate stiffness properties are repre-

sented and optimized using lamination parameters as design variables. Maximization

of the fundamental frequency, buckling load, and effective stiffness are chosen as the

design objectives. Pareto-optimal solutions are determined for the first time for dif-

ferent combinations of design objectives using lamination parameters. Two different

panel aspect ratios and three different load cases are considered. The results are vi-

sualized on Miki’s lamination diagram to provide an insight into potential solutions
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for multi-objective optimization problems. Significant changes in the trends of the

optimal solutions in the lamination parameters domain are demonstrated for different

problem types.

3.1 Single–objective Optimization Results

In general, gradient-based optimization algorithms work very well with the lamination

parameter formulation due to convex nature of the design space. However, in addition

to determining the optimal design points, obtaining the response contours is also

aimed in this study to provide a broader insight. For this reason, a full-factorial search

with a resolution of 0.05 in the lamination parameter variables is applied ensuring

the complete exploration of the design space.

In this section, the results regarding single-objective optimization of compos-

ite panels are presented. Each performance metric is investigated for the simply-

supported and clamped panels with two different panel aspect ratios. In addition,

different load cases are considered for maximum critical buckling coefficient and max-

imum effective stiffness metrics. The panel thickness-to-length ratio (h/a) is held

constant at 0.01 complying with the thin plate assumption. The plate material is

chosen as carbon fiber-reinforced epoxy with the properties given in Table 3.1 [Fuku-

naga et al., 1994]. The response data obtained for individual metrics is also used as

the input for the multi-objective optimization studies performed in the next section.

Table 3.1: Material properties of uni-
directional carbon-epoxy composite laminate

E1(GPa) 142.0

E2(GPa) 10.8

G12(GPa) 5.49

ν12 0.3

ρ(kg/m3) 1.6
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3.1.1 Fundamental Frequency Maximization

In the following, the maximum value of fundamental frequency is searched. The

calculated frequency values are normalized using the frequency parameter ω∗ defined

as [Fukunaga et al., 1994]

ω∗ =
ωnb

2

π2h

√
12ρ

Q22

(3.1)

where ρ is the laminate density. Figure 3.1 shows the non-dimensional fundamental

natural frequency contours for a balanced and symmetric plates as a function of

lamination parameters V1 and V3 for different aspect ratios and boundary conditions.

The contour plots agree with the ones presented in [Fukunaga et al., 1994]. One should

Figure 3.1: Fundamental frequency parameter ω∗ =
ωnb

2
√

12ρ/Q22/(π
2h) contours on lamination parameter plane for

simply-supported and clamped panels with different aspect ratios.



18 Chapter 3: Multi–objective Optimization of Laminated Plates

note the convex nature of the response surfaces resulting from modeling in lamination

parameters domain. The maximum fundamental frequency points are indicated by

black squares. The variables at the optimum points are denoted by “opt” superscript.

Table 3.2 shows the calculated optimal values and the ones from [Fukunaga et al.,

1994] presented for validation purposes. The results are in almost perfect agreement.

When the optimal solutions lie on the lower boundary of Miki’s lamination diagram,

they can only be obtained by specific layer angles which can be calculated using

Eq. 2.6. In such instances, the optimal laminate angles (θopt’s) are also presented

in the results together with optimal lamination parameters. In the current case, the

optimum angle for a/b = 1.0 is 45◦ for simply-supported panels. However, for clamped

panels, the optimum point lies on the upper boundary which cannot be obtained by

single-angle laminates. For a/b = 2.0, 90◦ laminates are required for both boundary

conditions which is a common result for high aspect ratio panels [Serhat et al., 2016].

The fundamental mode shapes for the maximum fundamental frequency designs are

shown in Fig. 3.2.

Table 3.2: Optimal design points yielding maximum fundamental fre-
quency values and corresponding layer angles for simply-supported and
clamped panels with different aspect ratios

a/b Simply-supported Clamped

V opt
1 V opt

3 θopt ω∗opt V opt
1 V opt

3 θopt ω∗opt

1.0
Present FE 0.0 -1.0 45◦ 5.33 0.0 1.0 N.A. 8.79

Fukunaga and

Sekine (1994)
0.0 -1.0 45◦ 5.32 0.0 1.0 N.A. 8.77

2.0
Present FE -1.0 1.0 90◦ 3.75 -1.0 1.0 90◦ 8.37

Fukunaga and

Sekine (1994)
-1.0 1.0 90◦ 3.73 -1.0 1.0 90◦ 8.31
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Figure 3.2: Fundamental mode shapes of simply-supported
and clamped panels with different aspect ratios for the max-
imum fundamental frequency designs.

3.1.2 Buckling Load Maximization

For the buckling analyses, 3 different unit load cases are considered: uni-axial loading,

bi-axial loading with Nx/Ny = 1 and shear loading which are illustrated in Fig. 3.3.

The critical buckling coefficient contours for simply-supported panels are presented

in Fig. 3.4. The sharp bends occurring on the responses originate from the change

of buckling modes characterized by the number of half-waves in x and y-directions

denoted by m and n, respectively. For example, for a/b = 1.0 and uni-axial loading,

buckling occurs with (m = 2, n = 1) in the vicinity of (V1 = −1.0, V3 = 1.0) corner,

where for the remaining region it occurs with (m = 1, n = 1). The optimum points

resulting in maximum buckling load are denoted by red diamonds. The values of the

design parameters and responses at the optimum points are tabulated in Table 3.3,

together with the results from [Fukunaga et al., 1995]. As the results show, all load

cases require (V opt
1 = 0.0, V opt

3 = −1.0) as optimal solution which is the same point

yielding the maximum fundamental frequency for the simply-supported square panel.

However, for a/b = 2.0, the optimum point changes for bi-axial and shear loading

cases conforming to results of [Fukunaga et al., 1995]. Figure 3.5 shows the critical

buckling modes for the simply-supported panels with the maximum buckling load

designs.
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Figure 3.3: Load cases used for the buckling analyses.

Figure 3.4: Critical buckling coefficient contours in lamination parameter plane for
simply-supported panels subjected to different loadings.

Figure 3.6 and Table 3.4 show the critical buckling coefficient contours and tab-

ulated optimal results for clamped panels, respectively. The results demonstrate the

significant changes in the critical buckling coefficient contours and the optimal designs

occurring with the alteration of the boundary conditions. Figure 3.7 shows the critical

buckling modes for the clamped panels with the maximum buckling load designs.
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Figure 3.5: Critical buckling modes for the simply-supported panels with the maxi-
mum buckling load designs.

Figure 3.6: Critical buckling coefficient contours in lamination parameter plane for
clamped panels subjected to different loadings.
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Figure 3.7: Critical buckling modes for the clamped panels with the maximum buck-
ling load designs.

3.1.3 Effective Stiffness Maximization

Figure 3.8 shows the contours of effective stiffnesses: Ex, Ē and Gxy in lamination

parameter plane. The optimal solutions are marked by magenta triangles, and their

values are tabulated in Table 3.5. The optimum points for Ex and Gxy are (V opt
1 = 1.0,

V opt
3 = 1.0) and (V opt

1 = 0.0, V opt
3 = −1.0) which correspond to 0◦ and ±45◦ laminates,

respectively. For Ē, the optimum is located at (V opt
1 = 0.0, V opt

3 = 1.0) which is only

obtainable by [0◦ 90◦] laminates.

Figure 3.8: Contours of effective stiffnesses: Ex, Ē and Gxy in lamination parameter
plane.
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Table 3.5: Optimal design points yielding maximum effective stiffness values
and corresponding layer angles

Ex Ē Gxy

V opt
1 V opt

3 θopt Eopt
x V opt

1 V opt
3 θopt Ēopt V opt

1 V opt
3 θopt Gopt

xy

1.0 1.0 0.0 1.0 0.0 1.0 N.A. 1.0 0.0 -1.0 45◦ 1.0

3.2 Multi–objective Optimization Results

In multi-objective optimization studies, it is common that different objective func-

tions require different optimal designs. In such cases, the set of best compromises

among all the possible designs is called Pareto set which contains the non-dominated

design points [Deb, 2001]. The best design points imply that the value of an objective

in the set cannot be further improved without worsening at least one other objective

value. Depending on the priorities, any point on the Pareto set can be regarded as

the optimum.

In this section, multi-objective optimization results for combinations of maximum

fundamental frequency, maximum critical buckling coefficient, and maximum effective

stiffness are presented. Pareto-optimal solutions are determined, firstly for each binary

combinations of objectives, and finally for all three objectives.

3.2.1 Fundamental Frequency and Buckling Load Maximization

Figure 3.9 shows Pareto-optimal points for maximum fundamental natural frequency

and buckling coefficient considering simply-supported panels. The rows show the

results for different panel aspect ratios where the columns represent different load

cases. Maximum fundamental frequency and maximum critical buckling coefficient

are indicated by black squares and red diamonds, respectively. Pareto-optimal points

excluding the individual optimal points are designated by cyan circles. For the square

panel, optimum point is (V opt
1 = 0.0, V opt

3 = −1.0) for both fundamental frequency

and critical buckling coefficient for all load cases resulting in a single global optimum.
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However, for a/b = 2, different requirements of individual performance metrics results

in a Pareto set containing multiple points. By choosing a point from Pareto set, the

designer makes a compromise between the values of individual performance metrics.

In this particular problem, the Pareto-optimal points are located on the boundary of

Miki’s diagram. Hence, each point corresponds to a specific laminate angle which lie

on the intervals: [±45◦,90◦], [±71.12◦,90◦], [±58.28◦,90◦] for uni-axial, bi-axial and

shear loading, respectively.

Figure 3.9: Pareto-optimal points for maximum fundamental natural frequency and
critical buckling coefficient considering simply-supported panels subjected to different
loadings.

Note that, optimum design for the maximum natural frequency may change due to

pre-stressing effects caused by the loading used for the buckling and static analyses.

However, under real operating conditions, the loading may fluctuate and even change

sign. Therefore, it is reasonable to consider the unstressed panels for the fundamental

frequency maximization.
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Figure 3.10 shows Pareto-optimal points for maximum fundamental natural fre-

quency and buckling coefficient considering clamped panels. For clamped boundary

conditions, the conflict between the maximum fundamental frequency and maximum

critical buckling coefficient points is greater. This fact can be seen by examining the

newly formed Pareto-optimal points for the square panels under uni-axial and shear

loading. In addition, the Pareto-optimal points do not always lie on the boundary of

Miki’s diagram in this case. This characteristic of the multi-objective optimization

solutions is clearly different than that of single-objective solutions which ordinarily

require single-angle laminates as shown in the previous section and also demonstrated

by [Grenestedt, 1990]. Since the interior points in the diagram require at least two

layer angles, a more elaborate stacking-sequence retrieval process is required for those

points. One should also notice the deviation of the interior Pareto-optimal solutions

Figure 3.10: Pareto-optimal points for maximum fundamental natural frequency and
critical buckling coefficient considering clamped panels subjected to different loadings.
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from the line which interpolates lamination parameter values for individual optimum

points, which is observed for uni-axial and bi-axial loading. In such cases, the optimal

design candidates which are not exactly located in the vicinity of the line interpolating

the individual optimal design parameters can be overlooked. Therefore, obtaining the

Pareto sets with sufficient resolution of design variable increments is clearly important

for the detection of the all optimal solutions.

3.2.2 Fundamental Frequency and Effective Stiffness Maximization

Figures 3.11 and 3.12 show Pareto-optimal points for maximum fundamental natural

frequency and effective stiffnesses considering simply-supported and clamped panels,

respectively. For this combination of performance metrics, the interior Pareto-optimal

points are located around the line interpolating the individual optimum points.

Figure 3.11: Pareto-optimal points for maximum fundamental natural frequency and
effective stiffnesses considering simply-supported panels subjected to different load-
ings.
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Figure 3.12: Pareto-optimal points for maximum fundamental natural frequency and
effective stiffnesses considering clamped panels subjected to different loadings.

3.2.3 Buckling Load and Effective Stiffness Maximization

Pareto-optimal points for maximum buckling coefficient and effective stiffness con-

sidering simply-supported and clamped panels are presented in Figs. 3.13 and 3.14,

respectively. For this combination of objectives, sharp changes in the optimal solu-

tion trends occur for the panels with a/b = 2.0 under uni-axial and bi-axial loading.

This behavior is a result of the sharp bends on critical buckling coefficient response

surface originating from the change of critical buckling mode indices (see Sect. 3.1.2).

One should also note that, for the square clamped panels, optimal points for critical

buckling coefficient and effective stiffness metrics are the same for all loading cases.
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Figure 3.13: Pareto-optimal points for maximum critical buckling coefficient and
effective stiffnesses for simply-supported panels subjected to different loadings.

3.2.4 Fundamental Frequency, Buckling Load and Effective Stiffness Maximization

As the ultimate optimization case, fundamental frequency (ω∗), buckling load (λcr)

and effective stiffness (E) are aimed to be maximized, simultaneously. Figure 3.15

shows the Pareto-optimal solutions for this problem considering simply-supported

panels. The results indicate that usage of 3 objectives may produce considerably

enlarged Pareto sets, especially for higher aspect ratios. The Pareto sets for this

problem appear to be a “filled” version of a frame consisting of 3 edges which are

actually the Pareto sets belonging to each binary combinations of design objectives.

Note that, binary Pareto sets can be considered as edges since the individual objectives

are connected by the Pareto-optimal points which is a result of continuous response

surfaces. When individual optimum points are located far away from each other,

such as for panel with aspect ratio 2.0 under uni-axial loading, Pareto set gets too
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Figure 3.14: Pareto-optimal points for maximum critical buckling coefficient and
effective stiffnesses for clamped panels subjected to different loadings.

crowded. In such cases, additional constraints on the objective function or design

variable values can be applied to reduce the number of optimal design candidates.

In Table 3.6, the percentage changes in the fundamental frequency, critical buck-

ling coefficient and effective stiffness metrics of the simply-supported panels are pre-

sented for the optimal point of each metric. The rows of the first column stand for the

design point in consideration. The sub-rows contain the percentage changes for the

specified performance metrics compared to the baseline values. The baseline laminate

configuration is selected as quasi-isotropic laminate with (V1 = 0.0, V3 = 0.0) which is

indicated by magenta asterisk in Fig. 2.3. The results show that the optimal solutions

for different performance metrics can strongly conflict each other, as the increase in a

certain metric can lead to a significant decrease in another one. Thus, finding Pareto

sets for such multi-objective laminate optimization problems is important to detect
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Figure 3.15: Pareto-optimal points for maximum fundamental frequency, critical
buckling coefficient and effective stiffnesses considering simply-supported panels sub-
jected to different loadings.

all the optimal solution candidates and find the best compromise among them. One

should also remark that, for the square panels under shear loading, a single optimum

point is detected considering all the objectives.

Figure 3.16 shows Pareto-optimal points for maximum fundamental frequency,

critical buckling coefficient and effective stiffnesses considering clamped panels. Al-

though their distribution is different, the large Pareto sets also appear for this case.

Only for the square panels under bi-axial loading, a single optimum point is found.

In Table 3.7, the percentage changes in the fundamental frequency, critical buckling

coefficient and effective stiffness metrics of the clamped panels are presented for the

optimal point of each metric.
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Table 3.6: Relative to the baseline values, the percentage changes in the fun-
damental frequency (ω∗), critical buckling coefficient (λcr) and effective stiffness
(E) at the optimal point of each metric considering simply-supported panels

a/b = 1.0 a/b = 2.0

Design

point
Metric Uni-axial Bi-axial Shear Uni-axial Bi-axial Shear

ω∗opt

ω∗ 12.21% 12.21% 12.21% 25.42% 25.42% 25.42%

λcr 25.49% 25.44% 21.49% -55.32% 5.64% -18.11%

E -70.65% -70.64% 73.91% -80.26% 39.86% -74.09%

λoptcr

ω∗ 12.21% 12.21% 12.21% -55.52% 22.07% 15.38%

λcr 25.49% 25.44% 21.49% 25.12% 49.51% 20.07%

E -70.65% -70.64% 73.91% -70.65% -28.37% 44.35%

Eopt

ω∗ -13.68% -13.68% 12.21% -47.16% -3.68% 3.34%

λcr -25.53% -25.53% 21.49% -55.76% -6.91% 7.57%

E 159.74% 41.84% 73.91% 159.74% 41.84% 73.91%
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Figure 3.16: Pareto-optimal points for maximum fundamental frequency, critical
buckling coefficient and effective stiffnesses considering clamped panels subjected to
different loadings.
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Table 3.7: Relative to the baseline values, the percentage changes in the fun-
damental frequency (ω∗), critical buckling coefficient (λcr) and effective stiffness
(E) at the optimal point of each metric considering clamped panels

a/b = 1.0 a/b = 2.0

Design

point
Metric Uni-axial Bi-axial Shear Uni-axial Bi-axial Shear

ω∗opt

ω∗ 1.38% 1.38% 1.38% 39.50% 39.50% 39.50%

λcr 1.36% 0.09% -7.61% -52.24% -19.79% -8.71%

E 41.82% 41.84% -74.09% -80.26% 39.86% -74.09%

λoptcr

ω∗ 1.20% 1.38% -1.85% 12.33% 15.50% 15.50%

λcr 25.49% 0.09% 21.49% 5.06% 22.28% 16.57%

E 159.74% 41.84% 73.91% -62.08% -48.23% 36.87%

Eopt

ω∗ 1.20% 1.38% -1.85% -45.50% 6.50% -7.50%

λcr 25.49% 0.09% 21.49% -29.47% 4.67% 2.84%

E 159.74% 41.84% 73.91% 159.74% 41.84% 73.91%



Chapter 4

DESIGN OF CURVED LAMINATED PANELS FOR

OPTIMAL DYNAMIC RESPONSE

Design of composites panels for obtaining optimum dynamic response can be

achieved by employing several approaches. Late–stage solutions involving the ap-

plication of additional stiffening components and damping materials require a sec-

ondary engineering process and introduce extra structural weight. Hence, the de-

sign methods that rely on stiffness tailoring have certain advantages. One conven-

tional method is the maximization of the frequency gap between adjacent natural

frequencies of the structure neighboring excitation frequency range which is utilized

in the studies: [Adali and Verijenko, 2001], [Farshi and Rabiei, 2007]. For relatively

low excitation frequencies, typically, maximization of the fundamental frequency is

used. For instance, [Bert, 1977] maximized the fundamental frequency of symmetric

and balanced laminates by choosing fiber orientation angles as design variables. He

used an analytical formula based on the classical lamination theory that he derived

for simply–supported thin rectangular laminated plates. Many other studies rely

on numerical solutions to handle various panel geometries, boundary conditions for

which closed–form relations are not available. For example, [Narita, 2003] used Ritz

method to calculate the natural frequencies of laminated composite plates. He con-

ducted a layer–wise optimization to obtain the maximum fundamental frequency. [Hu

and Peng, 2013] performed finite element analyses within an optimization framework

based on golden section method to maximize the fundamental natural frequency of

laminated cylindrical panels. In several recent studies, more advanced elements are

utilized for the analysis of curved composite structures. For instance, [Fazzolari, 2014]

carried out free vibration analysis of curved laminated shallow shells by using dynamic
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stiffness elements based on higher–order shear deformation theory (HSDT). [Orefice

et al., 2017] proposed a mechanical model composed of 2–node finite elements, which

can capture the nonlinear shear stresses occurring within the composite cylinders.

Several researchers used lamination parameters technique to express laminate stiff-

ness characteristics in a compact form independent of the number of layers and their

respective thicknesses. For instance, [Fukunaga et al., 1994] expressed fundamental

natural frequency ofsymmetrically laminated panels in terms of lamination param-

eters. Using Classical Laminated Plate Theory (CLPT) for formulating the stiff-

ness properties and Rayleigh–Ritz method for solving the equations of motion, they

determined optimal laminate configurations resulting in maximum fundamental fre-

quencies. [Diaconu et al., 2002] conducted a similar study for thick panels by using

First–order Shear Deformation Theory (FSDT) and compared the results with the

ones obtained via CLPT. [Trias et al., 2016] used lamination parameters to obtain the

optimal stacking–sequence providing maximum fundamental frequency. They used

various plate aspect ratios, plate thicknesses, and layer numbers to investigate their

effect on maximal fundamental frequency. [Honda et al., 2009] optimized lamination

parameters to modify laminate natural frequencies according to three performance

metrics. In addition to maximizing fundamental frequency, they also maximized the

difference between two adjacent frequencies, and minimized the difference between

the target and actual frequencies.

Even though maximizing frequency gaps works decently for specific problems, it

does not provide exact quantification of the response magnitudes at different exci-

tation frequencies. This problem is addressed by several studies through frequency–

response analyses. For instance, [Bardell et al., 1997] conducted a vibration study of

thin, laminated, cylindrically singly–curved shell panels using finite element method.

They obtained receptance FRFs for balanced and symmetric laminates under the

effect of point harmonic forces. Their work showed that variation of fiber angles sig-

nificantly changes the dynamic response in terms of resonance frequencies and magni-

tudes. Similarly, [Assaee and Hasani, 2015] investigated forced vibration response of
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curved composite cylindrical shells using spline finite strip method. They computed

receptances for simply–supported and clamped panels subjected to point excitation.

[Niu et al., 2010] conducted a discrete material optimization study to minimize the

total sound power radiated out of vibrating laminated composite plates excited by

harmonic dynamic pressure. They found optimal fiber orientations at discretized re-

gions for different frequencies by calculating the responses of curved laminated panels

using finite element analyses. Recently, [Sahoo et al., 2016] investigated the dy-

namic behavior of flat/curved laminated panel structures using finite elements based

on HSDT and included experimental validations for free and forced vibration cases.

They showed considerable effects of changing the panel curvature, aspect ratio and

support conditions.

Existing design studies, which use lamination parameters formulation to opti-

mize stiffness properties of the composite panels to improve dynamic response, are

restricted to modifying natural frequencies. Performance of such panels under dy-

namic excitations has not been investigated in frequency domain using lamination

parameters. Besides, fundamental frequency contours in lamination parameter plane

for curved panels are not available. The present study addresses these gaps in the

literature, and utilizes the lamination parameters technique to examine the dynamic

response of flat and curved composite panels. Stiffness properties are modeled in

terms of lamination parameters which are treated as design variables. Finite element

analyses are performed to investigate the individual and combined effects of varying

panel aspect ratios, curvatures and boundary conditions on the dynamic responses.

Fundamental frequency contours in lamination parameters domain are obtained for

different sets of model parameters. In addition, equivalent radiated power (ERP )

contours for the panels excited by harmonic pressure are shown. Optimal laminate

configurations providing the best dynamic performance are determined by initially

maximizing the fundamental frequencies, then minimizing ERP at different frequen-

cies. The relationship between the designs optimized for maximum fundamental fre-

quency and minimum ERP responses is investigated to study the effectiveness of the
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frequency maximization technique. The results demonstrated the potential of using

lamination parameters technique in the design of flat/curved composite panels for

the optimal dynamic response, and provided valuable insight into the effect of various

design parameters.

4.1 Validations

Prior to the investigation of design parameter effects on the dynamic response of

the composite panel, finite element model of the structure is validated. All analyses

are conducted using carbon–epoxy composite layers as the laminate material whose

properties are given in Table 4.1 [Narita, 2003], [Botelhoa et al., 2006]. Initially, a

Table 4.1: Material properties of uni–
directional carbon–epoxy composite laminate.

E1(GPa) 138.0

E2(GPa) 8.96

G12(GPa) 7.1

ν12 0.3

ρ(kg/m3) 1.6

η 0.01

study on the mesh size is conducted to achieve convergence for the modal analysis

results. Afterwards, modal analyses are carried out for different boundary conditions,

panel curvatures and laminate ply angles. Resulting 1st and 2nd natural frequencies are

compared to the results from [Liew et al., 1997]. Table 4.2 shows the comparison of the

non–dimensional frequency parameters obtained by λn = ωnapb
√
ρh/Dλ, where ap is

planform panel length: ap = 2 sin(a/2r) and Dλ is the reference plate flexural rigidity:

Dλ = E11h
3/12(1− ν12ν21) The results agree very well with each other signifying the

good accuracy of the developed finite element (FE) model. A further comparison is

done for the maximum fundamental frequencies from [Abdalla et al., 2007] to validate
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Table 4.2: Frequency parameters λn = ωnapb
√
ρh/Dλ for singly curved, 8–ply

laminated graphite/epoxy cylindrical shells with ap/h = 100.0, ap/b = 1.0 and
stacking sequence: [−θ, θ,−θ, θ, θ,−θ, θ,−θ].

BC ap/r θ 1st Mode 2nd Mode

[Liew et al., 1997] FE [Liew et al., 1997] FE

SSSS

0.0
0◦ 11.290 11.311 17.132 17.235

45◦ 14.089 14.108 30.901 31.091

0.5

0◦ 30.220 30.618 31.125 31.552

45◦ 63.235 64.088 64.373 65.133

90◦ 50.807 51.116 73.522 74.435

CCCC

0.0
0◦ 23.853 23.913 29.720 29.916

45◦ 22.887 22.901 43.954 44.302

0.5

0◦ 37.669 38.059 40.228 40.643

45◦ 67.634 68.465 73.414 74.156

90◦ 68.339 68.819 85.251 86.263

the lamination parameter formulation. The frequencies are also calculated using the

following analytical relation based on CLPT which gives the natural frequencies of

a laminated plate (rad/s), in terms of its bending stiffness entities, dimensions, and

mode numbers [Gürdal et al., 1999]:

ωn =
π2

√
ρh

√
D11

(m
a

)4

+ 2(D12 + 2D66)
(mn
ab

)2

+D22

(n
b

)4

(4.1)

where m and n are the number of half–waves in x and y-directions, respectively. In the

comparisons, normalized frequency parameter defined as Ωn = ωna
2
√
ρh/DΩ is used,

where DΩ = E22h
3/12(1− ν12ν21). In Table 4.3, the results for the maximum funda-

mental frequency parameter Ωmax
1 and corresponding optimal lamination parameters

(V opt
1 , V opt

3 ) are presented, which also show a very good agreement.
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Table 4.3: Maximum fundamental frequency parameters Ωmax
1 =

ωmax1 a2
√
ρh/DΩ and corresponding optimal lamination parameters for

simply–supported plates with different aspect ratios.

a/b V opt
1 V opt

3 Ωmax
1

1.0

[Abdalla et al., 2007] 0.0 -1.0 55.53

Eq. 4.1 0.0 -1.0 56.53

FE 0.0 -1.0 56.60

2.0

[Abdalla et al., 2007] -1.0 1.0 159.89

Eq. 4.1 -1.0 1.0 159.89

FE -1.0 1.0 160.23

4.2 Fundamental Frequency Maximization

In this section, individual and combined effects of model parameters (panel aspect

ratio, curvature, and boundary conditions) on the fundamental frequency responses

are investigated. For all cases length–to–thickness ratio (a/h) is kept at 100.0.

4.2.1 Fundamental Frequency Contours

In the following, fundamental frequency contours together with points of minimum

and maximum values are demonstrated on lamination parameter plane for different

aspect ratios, panel curvatures, and boundary conditions. The frequency contours for

simply–supported panels are presented in Fig. 4.1. Optimal design points providing

maximum frequencies are indicated by black squares (�), whereas points of minima

are marked by magenta diamonds (�). The first column in Fig. 4.1 shows that

frequency contours of flat panels rotate clockwise as a/b ratio is increased from 1.0

to 2.0 making laminate angles yielding maximum fundamental frequency move from

±45◦ to 90◦. Further increase in a/b does not change the optimal point even though

the frequency values vary. However, such convergence behavior is not observed for

increasing panel curvature. Moreover, changing aspect ratio and curvature affect the
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frequency contours in a dissimilar way. Therefore, obtaining responses for different

sets of geometric parameters to determine combined effects is important. One can

also observe that, for a/r ratios of 0.0 and 0.1, frequency contour lines in lamination

parameter plane are rather straight where higher a/r values result in curved contour

lines. The optimal results from Fig. 4.1 are tabulated in Table 4.4. Since all the

optimal lamination parameters have been found to lie on the lower boundary of the

feasible domain, corresponding ply angles (θopt) obtained by Eq. 2.6 are also provided.

Figure 4.1: Fundamental frequency parameter Ω1 = ω1a
2
√
ρh/DΩ contours on lami-

nation parameter plane for simply–supported panels with different aspect ratios and
curvatures.
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Table 4.4: Optimal design points yielding maximum fundamental frequency val-
ues and corresponding layer angles for simply–supported panels of different aspect
ratios and curvatures.

a/b

a/r

0.0 0.1 0.2 0.5

V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt

1.0 0.0 -1.0 45◦ 1.0 1.0 0◦ 0.63 -0.2 25.4◦ 0.32 -0.8 35.8◦

1.5 -0.63 -0.2 64.6◦ 1.0 1.0 0◦ 0.63 -0.2 25.4◦ 0.39 -0.7 33.6◦

2.0 -1.0 1.0 90◦ -1.0 1.0 90◦ 0.81 0.3 18.1◦ 0.45 -0.6 31.7◦

Fig. 4.2 and Table 4.5 show the frequency contours and tabulated optimal design

points for clamped panels, respectively. For clamped panels, all the design points

except (a/b = 1.0, a/r = 0.0) are located on the lower boundary of Miki’s diagram.

In addition, the effect of aspect ratio is found to be more dominant over curvature

compared to simply–supported panels. Another noteworthy finding is that optimal

points for a/r = 0.5 are similar for all aspect ratios of both simply and clamped

panels, located in the lower right quadrant of the feasible domain. This is because,

the stiffening effect of high curvature dominates over the influence of aspect ratio

and boundary conditions. Finally, the frequency contour lines of clamped panels look

relatively straight until a/r is increased to 0.5 where they become significantly curved.

4.2.2 Mode Shapes for the Maximum Fundamental Frequency

Natural frequencies and mode shapes of structures are major factors affecting their re-

sponses to dynamic excitations. In this sub–section, mode shapes and non–dimensional

natural frequencies of panels with lamination parameters yielding maximum funda-

mental frequency are demonstrated. The results, calculated for different aspect ratios

and curvatures, are presented in Fig. 4.3 and Fig. 4.4 for simply–supported and

clamped boundary conditions, respectively. Regarding simply–supported boundary
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Figure 4.2: Fundamental frequency parameter Ω1 = ω1a
2
√
ρh/DΩ contours on lami-

nation parameter plane for clamped panels with different aspect ratios and curvatures.

conditions, half–wave numbers of the fundamental frequency mode are (m = 1, n = 1)

for flat panels and curved panels with a/r = 0.1. Higher a/r ratios change the funda-

mental vibration mode to (m = 2, n = 1). This transition is, in fact, the underlying

reason for the form change in the fundamental frequency contours shown previously.

It also significantly affects dynamic response of the panel to harmonic pressure exci-

tation which is studied in the next section. Clamped panels show a similar behavior,

where vibration mode transition from (m = 1, n = 1) to (m = 2, n = 1) occurs when

a/r is increased to 0.5.
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Table 4.5: Optimal design points yielding maximum fundamental frequency values
and corresponding layer angles for clamped panels of different aspect ratios and
curvatures.

a/b

a/r

0.0 0.1 0.2 0.5

V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt

1.0 0.0 1.0 N/A 1.0 1.0 0◦ 1.0 1.0 0◦ 0.55 -0.4 28.4◦

1.5 -1.0 1.0 90.0◦ -1.0 1.0 90◦ 1.0 1.0 0◦ 0.39 -0.7 33.6◦

2.0 -1.0 1.0 90◦ -1.0 1.0 90◦ -1.0 1.0 90◦ 0.39 -0.7 33.6◦

Figure 4.3: Optimal design points yielding maximum fundamental frequency values
and corresponding layer angles for simply–supported panels of different aspect ratios
and curvatures.
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Figure 4.4: Optimal design points yielding maximum fundamental frequency values
and corresponding layer angles for clamped panels of different aspect ratios and cur-
vatures.

4.3 Equivalent Radiated Power Minimization

In this section, individual and combined effects of panel geometry and excitation

frequency on the forced dynamic responses are investigated. Optimal lamination

parameters providing the minimum ERP values for different excitation frequencies

are calculated.

4.3.1 ERP Contours at the Fundamental Frequency

Equivalent radiated power contours and optimal design points for the panels of dif-

ferent aspect ratios and curvatures excited by harmonic pressure are presented in this

sub–section. Fundamental frequencies are selected as the excitation frequencies to

demonstrate the resonance effects where the results for the intermediate frequencies

up to the fundamental frequencies are calculated in the next sub–section.

In Fig. 4.5, the contour plots for simply–supported boundary conditions are

shown. The results are normalized (denoted by ERP ) for each case by dividing

all response values by their maximum amplitudes. The optimal points are marked by

red triangles (N). When a/r is equal to 0.0 or 0.1, ERP contour graphs look similar
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to the inverse of the fundamental frequency contours. This condition is a result of the

fact that fundamental vibration mode shown in Fig. 4.3 has the number of half–waves

of (m = 1, n = 1), which can be efficiently excited under harmonic pressure. If the

curvature values are increased to a/r = 0.2 or 0.5, the mode changes to (m = 2, n = 1)

and the response surfaces look significantly different as stripes of resonances appear

in the middle regions of the feasible domain. These resonance bands get thicker and

move towards the right side of the feasible domain as a/b increases. Increasing a/r

ratio has a converse effect causing resonance bands to be thinner and move leftwards.

In addition, for the panels with a/r = 0.5, considerably low relative response ampli-

Figure 4.5: Optimal design points yielding maximum fundamental frequency values
and corresponding layer angles for simply–supported panels of different aspect ratios
and curvatures.



48 Chapter 4: Design of Curved Laminated Panels for Optimal Dynamic Response

tudes are observed at the points where excitation and natural frequencies coincide,

due to low modal excitation efficiency against harmonic pressure. This fact can be

noticed by comparing last columns in Figs. 4.1 and 4.5. Furthermore, one should

note that even though the individual increments in a/b or a/r values lead to the same

optimum points, their combined effect may result in significantly different solutions.

For instance, the cases with (a/b = 1.5, a/r = 0.0) and (a/b = 1.0, a/r = 0.2) both

require (V1 = 1.0, V3 = 1.0) as the optimal design point, very unlike the optimum for

(a/b = 1.5, a/r = 0.2) which is located at (V1 = 1.0,−V3 = 1.0). In Table 4.6, the

optimal design points from Fig. 4.5 are tabulated.

Table 4.6: Optimal design points yielding minimum ERP and corresponding layer
angles for simply–supported panels of different aspect ratios and curvatures excited
by harmonic pressure with frequency ωmax1 .

a/b

a/r

0.0 0.1 0.2 0.5

V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt

1.0 0.0 1.0 N/A -0.63 -0.2 64.6◦ 1.0 1.0 0◦ 1.0 1.0 0◦

1.5 1.0 1.0 0◦ -0.95 0.8 80.8◦ -1.0 1.0 90◦ 0.2 1.0 N/A

2.0 1.0 1.0 0◦ 1.0 1.0 0◦ -0.63 -0.2 64.6◦ 0.7 1.0 N/A

As an additional remark, one can observe the non–convex behavior of frequency–

response quantities in lamination parameters space. This is somewhat unusual since

problem formulations using lamination parameters generally lead to convex responses,

which is previously shown by [Grenestedt and Gudmundson, 1993]. However, this is

not the case in frequency–response quantities due to resonance effects. For this rea-

son, using gradient–based optimization algorithms to reduce forced dynamic response

of composite panels using lamination parameters might result in locally optimal so-

lutions.

Fig. 4.6 and Table 4.7 show ERP contours for clamped panels excited by harmonic

pressure with fundamental panel frequency and tabulated optimal design points, re-
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spectively. Again, the transition of vibration mode from (m = 1, n = 1) to (m = 2,

n = 1) changes the nature of the response surfaces, which occurs when a/r becomes

0.5. In this case, however, the resonance bands look rather blurry and discontinuous

contrary to simply–supported boundary conditions. Also, the square flat panel shows

an unusual response where a large region of resonance occurs and the difference be-

tween the maximum and the minimum amplitudes is significantly smaller than the

other cases.

Figure 4.6: Optimal design points yielding maximum fundamental frequency values
and corresponding layer angles for clamped panels of different aspect ratios and cur-
vatures.
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Table 4.7: Optimal design points yielding minimum ERP and corresponding layer
angles for clamped panels of different aspect ratios and curvatures excited by har-
monic pressure with frequency ωmax1 .

a/b

a/r

0.0 0.1 0.2 0.5

V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt V opt
1 V opt

3 ±θopt

1.0 0.0 -1.0 45◦ -0.74 0.1 68.9◦ -1.0 1.0 90◦ 1.0 1.0 0◦

1.5 1.0 1.0 0◦ 0.74 0.1 21.1◦ -0.32 -0.8 54.2◦ 1.0 1.0 0◦

2.0 1.0 1.0 0◦ 1.0 1.0 0◦ 0.74 0.1 21.1◦ 0.89 0.6 13.3◦

4.3.2 Minimum ERP Points for Different Excitation Frequencies

In the following, optimal lamination parameters providing minimum ERP values

are calculated for different frequencies of harmonic pressure excitation considering

various panel geometries and boundary conditions. The results are calculated by

sweeping the excitation frequency from 0 up to the maximum fundamental frequency,

which corresponds to the range: ω =0–1.0, where ω = ω/ωmax1 is the frequency ratio.

At each frequency, the lamination parameter pair that gives the minimum ERP is

determined. For each panel configuration, FRF curves are shown for three laminate

designs:

1. Optimal design that provides the minimum ERP starting from ω = 0, which

will be referred as “•”,

2. Optimal design that provides the minimum ERP around ω = 1, which is shown

by “N” in Figs. 4.5 and 4.6,

3. Maximum fundamental frequency design, which is shown by “�” in Figs. 4.1

and 4.2.

Conformity and difference between these responses are analyzed. In addition, the

effective frequency ranges for “•” and “N” are demonstrated. Moreover, the sensitivity
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of FRFs with respect to the model parameters is investigated.

Figs. 4.7 and 4.8 show normalized ẼRP vs. ω curves for various panels having

simply–supported and clamped boundary conditions, respectively. In these graphs,

the normalization is performed by dividing all response values by the minimum ERP

amplitude at ω = 1.0 for each case. The FRFs referring to “•”, “N”, and “�” are

represented by green dashed line, red dotted line, and black solid line, respectively.

The effective frequency ranges for “•” and “N”, in which they are the optimum

designs, are indicated by green and red transparent background shadings, respectively.

If the optimum design is the same for entire frequency range, green–red hatched

shading is used meaning that “•” and “N” coalesce. If a frequency interval exists

where neither “•” nor “N” is the true optimum, it is demonstrated by yellow shading.

The FRF curves of these additional optimal solutions are not plotted for the sake

of clarity since there can be more than one solution. For both simply–supported

and clamped panels, “•” and “�” are the same for the cases where fundamental

vibration mode is: (m = 1, n = 1). This can be observed by inspecting the overlap

of the green and black lines on the first two columns in Fig. 4.7 and the first three

columns in Fig. 4.8. For other cases with (m = 2, n = 1), “•” and “�” differ. This

observation shows that frequency maximization technique is effective in minimizing

forced dynamic response under certain conditions.

In most cases, the optimal designs change drastically due to the resonance effects

when the excitation frequency is increased from 0 to a critical value. This transition

frequency can be very different depending on the case; whose smallest value is around

ω = 0.67 observed for simply–supported panel with a/b = 2.0 & a/r = 0.5, and

highest value is ω = 0.99 occurring for the clamped square flat panel. Only for

simply–supported panels with a/b = 1.0 & a/r = (0.2, 0.5) and clamped panels

with a/b = (1.0, 1.5) & a/r = 0.5, the optimum point remains unchanged for entire

frequency range. In these cases, fundamental frequency maximization is observed to

be ineffective for reducing forced dynamic response amplitudes, since the FRFs for

“�” lie above the optimal ones in the entire frequency range.
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Figure 4.7: ẼRP vs. ω plots of “•” (green dashed line), “N” (red dotted line), and
“�” (black straight line) for simply–supported panels of various geometries excited
by harmonic pressure.

Additionally, no yellow regions (additional optimal solutions) exist for flat panels,

highlighting the importance of the optimal solutions for relatively lower frequencies

(•), and around maximum fundamental frequency (N). For a/r values of 0.0 and 0.1,

the effective interval of optimal design around maximum fundamental frequency is

enlarged as a/b ratio is increased. For curved panels, intermediate optimal solutions

might appear, which can cover a significant portion of the frequency range of interest.

The widest region of intermediate optima is around one–third of the entire analysis

frequency range, occurring for simply–supported panel with a/b = 2.0 & a/r = 0.5.
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Figure 4.8: ẼRP vs. ω plots of “•” (green dashed line), “N” (red dotted line), and
“�” (black straight line) for clamped panels of various geometries excited by harmonic
pressure.

The effective interval of intermediate optima shrinks with the increasing a/b ratio for

lightly curved panels with a/r = 0.1.



Chapter 5

MODELING AND OPTIMIZATION OF

VARIABLE–STIFFNESS LAMINATES

Prior to the development of variable–stiffness laminates, many optimization stud-

ies have been conducted considering constant–stiffness laminates. Modification of

the natural frequencies has been extensively used for achieving satisfactory dynamic

properties concerning the specific application. In this context, the problem of funda-

mental frequency maximization has been frequently studied. For instance, [Apalak

et al., 2008] determined optimal configurations of the laminated composites yielding

the maximum fundamental frequency. They used finite element analysis (FEA) to

compute the responses and used genetic algorithm for the optimization process. Sim-

ilar studies have also been conducted for curved panels. For example, [Narita and

Robinson, 2006] used Ritz method for layerwise optimization of thin cylindrical lam-

inates for maximization of the fundamental frequency. Likewise, [Ameri et al., 2012]

conducted an optimization study to find optimal laminate configurations that provide

maximum fundamental natural frequencies for cylindrical panels. They used finite el-

ement analysis to calculate solutions for different geometric parameters and boundary

conditions. In the literature, studies with the aim of maximizing the difference be-

tween adjacent natural frequencies are also prevalent. For instance, [Adali, 1984]

optimized shear–deformable antisymmetric angle–ply laminates for maximizing both

fundamental frequency and separation of two neighboring frequencies. He consid-

ered simply–supported plates and calculated the responses using analytical relations.

[Farshi and Rabiei, 2007] performed a layerwise laminate optimization study by us-

ing Rayleigh–Ritz method to obtain solutions for various boundary conditions. They

determined the stacking–sequences that give maximum values for the first natural
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frequency and the difference between the first and the second frequencies. [Kayikci

and Sonmez, 2012] also maximized the separation between adjacent frequencies of

laminated plates. They utilized an analytical method based on Fourier series which

accounts for bending–twisting coupling.

The potential of constant–stiffness laminates reach its limits for the enhancement

of operational performance. The existing values of the optimal responses can be fur-

ther improved by using variable–stiffness laminates [Gürdal and Olmedo, 1993]. One

design technique to achieve variable–stiffness properties is dividing the plate into dis-

crete elements and optimizing the fiber angle of each element. For example, [Honda

and Narita, 2008] optimized the short fiber angles of laminated composite plates for

achieving maximum fundamental frequency. They used finite element method to

model the non–uniform structure and genetic algorithm as the optimization method.

Their results indicate that higher fundamental frequency values can be achieved by

varying elemental fiber angles instead of using parallel fiber laminates. However,

when the fiber angles are optimized without imposing any relation between neighbor-

ing elements, abrupt differences between the adjacent fiber orientations might occur

hindering the manufacturability [Peeters et al., 2015]. To overcome this problem,

several approaches utilizing curved continuous fibers within the laminate layers were

proposed. For instance, [Honda and Narita, 2011] maximized the fundamental fre-

quency of composites having curvilinear fibers in addition to the ones with short

straight fibers. They used cubic polynomial functions to represent curvilinear fiber

paths and computed natural frequencies using FEA. Their results show that the fiber

shapes significantly influence the fundamental frequency values as well as correspond-

ing vibration mode shapes. For curved panels there are relatively fewer number of

studies when variable–stiffness laminates are considered. For instance, [Ribeiro, 2016]

investigated free vibration of cylindrical laminates consisting of layers with curvilin-

ear fiber paths. He determined that with the increasing panel curvature, usage of

curvilinear fibers instead of straight ones affects the natural frequencies and mode

shapes more significantly.
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One shortcoming of the optimization approaches using number of layers, layer

thicknesses and angles is that, the solution depends on the initial assumptions on the

laminate configuration. As a remedy, lamination parameters formulation has been uti-

lized in various studies to describe laminate stiffness properties in a compact form. For

constant–stiffness laminates, there are many studies based on lamination parameters.

For example, [Fukunaga et al., 1994] calculated the optimal lamination parameters for

maximizing the fundamental frequency of symmetrically laminated plates with dif-

ferent aspect ratios. They used Rayleigh–Ritz and Galerkin methods for the analysis

of simply–supported and clamped plates, respectively. [Diaconu et al., 2002] adopted

lamination parameters as the design variables to obtain the optimal laminate con-

figurations for maximizing the fundamental frequencies of symmetrically laminated

thick plates. They investigated the effects of using CLPT or FSDT for the kinematic

relations and found that two theories may produce different optimal results in some

cases. However, all optimal laminate configurations showed the characteristics of

specially orthotropic laminates which exhibit no shear–extension or bending–twisting

coupling. [Honda et al., 2009] used lamination parameters to maximize the difference

of two adjacent natural frequencies in addition to the fundamental frequency. They

used Ritz method to solve for the modal frequencies and displacements together with

layerwise optimization approach. Serhat and Basdogan maximized the fundamen-

tal frequency of laminated plates [Serhat and Basdogan, 2016a] and curved panels

[Serhat and Basdogan, 2018] in lamination parameter domain using an optimization

framework based on finite analysis.

For variable–stiffness laminates, there are a few available design studies relying

on lamination parameters. [Setoodeh et al., 2006] introduced the concept of using

lamination parameters for the design of variable–stiffness laminates and showed that

the structural performance can be improved significantly by using such methodol-

ogy. However, the fiber paths corresponding to the optimal lamination parameter

distribution were not obtained in that study. The authors outlined the difficulty of

finding fiber paths satisfying spatially changing lamination parameters while keeping
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the ply thickness constant and respecting the minimum radius of curvature. Later,

[Abdalla et al., 2007] maximized the fundamental frequency of variable–stiffness com-

posite plates using lamination parameters. In their study, they searched an optimum

distribution of lamination parameters for a simply–supported plate. Since they only

investigated theoretical limits for the maximum value of the fundamental frequency,

manufacturing constraints were disregarded and the laminate configurations satisfy-

ing optimal lamination parameters distributions were not found. Their results showed

that, in the absence of manufacturing constraints, resulting lamination parameter dis-

tribution can be very irregular complicating the retrieval of an actual laminate con-

figuration. Utilization of lamination parameters in an optimization framework which

properly considers manufacturing constraints is an active research topic, and only

a few studies addressing the problem are available in the literature. In two recent

studies, a three–step approach was followed where optimal lamination parameters

and corresponding stacking–sequence for variable–stiffness laminates was presented

[Peeters et al., 2015], [Peeters et al., 2018]. They found the optimal stiffness distri-

bution in terms of the lamination parameters in the first step, calculated the optimal

manufacturable fiber angle distribution in the second step, and retrieved the fiber

paths in the third step.

In this chapter, a novel variable–stiffness laminate optimization technique that

considers the manufacturability of the composite panels is proposed. It constrains

the design space which controls the direction of change for the lamination parame-

ters and subsequently leads a smooth change in the layer angles. The method differs

from the existing methods by its simplicity and provides an efficient mean to esti-

mate the required stiffness distributions within variable–stiffness composite panels.

Finite element analyses are used to calculate solutions for various panel geometries

and boundary conditions. After finding optimal lamination parameter distributions,

corresponding fiber orientations of the layers are also calculated. In addition to the

novelty of the proposed method, the eigenfrequency separation problem for curved

variable–stiffness panels is studied for the first time using lamination parameters.
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The developed method is utilized to maximize the fundamental frequencies of panels

having different aspect ratios, curvatures and boundary conditions as example cases.

The results demonstrated that variable–stiffness designs with smooth manufacturable

fiber paths can be obtained and better performances can be achieved compared to

the constant–stiffness designs by utilizing the proposed method.

5.1 Design Procedure

In this section, the proposed interpolation method for the design of variable–stiffness

laminates is presented. It is developed to utilize the lamination parameter formulation

while considering manufacturability of the optimal design. The method follows a 3–

step approach:

1. Obtaining optimal lamination parameter distribution

2. Computation of fiber angle distribution

3. Retrieval of fiber paths

5.1.1 Obtaining Optimal Lamination Parameter Distribution

At the first step, the optimal lamination parameter distribution is sought. The method

relies on constraining the change of lamination parameters within the feasible domain

in a controlled manner. Each discrete panel element is assigned a lamination param-

eter pair lying on the prescribed curves that are functions of the volumetric ratio.

These prescribed curves are defined by the following relation:

V1 = (2Rr − 1)
√

(V3 + 1)/2 (5.1)

assuming that there are maximum of two different layer angle distributions. Rr is the

volumetric ratio of the layer angles located at the right boundary of the Miki’s diagram

(45◦–0◦). The volumetric ratio of the layer angles located at the left boundary (45◦–

90◦) can inherently be found as Rl = 1.0−Rr, where Rl and Rr take values between
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0.0 and 1.0. In Fig. 5.1, several prescribed curves of design points for different

volumetric ratios are illustrated on Miki’s diagram. During the optimization process,

Figure 5.1: Several curves of design points for different volumetric ratios.

the lamination parameters pertaining to the adjacent elements are enforced to have

close values to ensure a smooth distribution over the panel. This is ensured by using

master nodes and applying a distancebased interpolation for the elemental values. For

instance, let the coordinates of the first and the second master nodes be: (x1,y1) and

(x2,y2). For each element of the discretized plate, let (xe,ye) be the central coordinates

of the elements. The distances between the element centers and the master nodes can

be found as: d1 =
√

(xe − x1)2 + (ye − y1)2 and d2 =
√

(xe − x2)2 + (ye − y2)2 for

the first and the second nodes, respectively. The elemental lamination parameters

can then be calculated by finding the point Pe on the arcøP1P2 satisfying the relation:

øPeP1/øPeP2 = d1/d2 (5.2)

This search can be performed numerically by discretizing the arc and going over all

the points. Note that, the influence of the master nodes on the elemental lamination

parameters decreases as the distance between the nodes and the elements increases.
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In Fig. 5.2, an example design with (Rl = 0.75, Rr = 0.25), P1(V1, V3) =

(−0.1768,−0.75), P2(V1, V3) = (−0.4677, 0.75) is used with the proposed method and

it is illustrated on Miki’s diagram. Note that, for any V3 value, the proportion of the

horizontal distances between the prescribed curve and the diagram boundaries remain

the same. Next, lamination parameter distribution is obtained using the described

Figure 5.2: Exemplary design with (Rl = 0.75, Rr = 0.25),
P1(V1, V3) = (−0.1768,−0.75), P2(V1, V3) = (−0.4677, 0.75).

interpolation approach. For this example, the master node locations are chosen as one

corner and the center of the panel. Symmetricity is applied in the horizontal and the

vertical planes. Figure 5.3 shows the lamination parameter distribution corresponding

to the exemplary points illustrated in Fig. 5.2. One may notice the smooth change

in the lamination parameter variables as the outcome of the interpolation approach.

In this study, a design approach with two master nodes is employed for simplicity.

However, more points can be easily used by following the same principles.

5.1.2 Computation of Fiber Angle Distribution

The second step of the optimization procedure is the computation of the fiber angle

distribution. This is a straight–forward operation which firstly requires computing
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Figure 5.3: The elemental angles corresponding to the lamination parameter dis-
tribution for the exemplary design with (Rl = 0.75, Rr = 0.25), P1(V1, V3) =
(−0.1768,−0.75), P2(V1, V3) = (−0.4677, 0.75).

V1 = ±(V3 + 1)/2 for each element using V3’s as the input. After that, the positive

and the negative values of V1 can be inserted into Eq. (6) to obtain elemental fiber

angles θl and θr, respectively. Figure 5.4 shows the distribution of elemental angles

corresponding to the lamination parameter distribution presented in Fig. 5.3. The

adjacent fiber angles reflect the smooth transition feature of the input V3 distribution.

This is because, the laminate angles are calculated at the two boundary points of the

Miki’s diagram, both having the elemental V3 values (see Fig. 5.2).

Figure 5.4: The elemental angles corresponding to the lamination parameter dis-
tribution for the exemplary design with (Rl = 0.75, Rr = 0.25), P1(V1, V3) =
(−0.1768,−0.75), P2(V1, V3) = (−0.4677, 0.75).
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5.1.3 Retrieval of Fiber Paths

The last step in the optimization procedure is the retrieval of the continuous fiber

paths suitable for manufacturing out of the optimal discrete fiber distribution. This

problem has been previously studied by [Blom et al., 2010] who used stream functions

to represent the fiber paths. They defined the stream functions: Ψ(x, y) = C by using

the following relation:

dΨ

ds
=

dΨ

dx

dx

ds
+

dΨ

dy

dy

ds
=

dΨ

dx
sin θ +

dΨ

dy
cos θ = 0 (5.3)

for a given fiber angle distribution θ(x, y). This methodology is utilized to obtain fiber

paths from the available fiber angle distribution. In Fig. 5.5, the laminate fiber paths

corresponding to the elemental fiber angle distribution shown in Fig. 5.4 is presented.

Due to the controlled pattern of the input fiber angle distribution, smooth fiber paths

appropriate for tow–steering could be obtained. The thickness build–up due to the

overlap of fiber tows during the steering process is disregarded in this study, which is

also a topic of investigation in the literature [Blom et al., 2010].

Figure 5.5: The laminate fiber paths corresponding to the fiber angle distribution for
the exemplary design with (Rl = 0.75, Rr = 0.25), P1(V1, V3) = (−0.1768,−0.75),
P2(V1, V3) = (−0.4677, 0.75).

5.1.4 Design Procedure Summary

The design procedure is summarized as a flow–chart which is given in Fig. 5.6. In this

study, entire lamination parameter design space is scanned by using a full–factorial
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search for finding optimal design variables. However, gradient–based optimization

methods can also be used to improve the computational efficiency. Moreover, the

locations of the master nodes which were held constant to simplify the problem can

also be optimized in the future studies.

Figure 5.6: The laminate fiber paths corresponding to the fiber angle distribution for
the exemplary design with (Rl = 0.75, Rr = 0.25), P1(V1, V3) = (−0.1768,−0.75),
P2(V1, V3) = (−0.4677, 0.75).

5.2 Variable–stiffness Designs for Eigenfrequency Separation

In this section, the results obtained using the proposed methodology are presented.

Fundamental frequency and the difference between the first and the second natural

frequencies are chosen as the performance metrics to be maximized. The frequency
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values are nondimensionalized using the relation [Abdalla et al., 2007]:

ωn = ωn(b2/h)
√
ρ/E2 (5.4)

Various cases with different panel aspect ratios, curvatures and boundary conditions

are considered. In all analyses, horizontal and vertical symmetricity is applied for the

lamination parameter distributions. The panel material is chosen as graphite/epoxy

laminae with the properties given in Table 5.1.

Table 5.1: Material properties of graphite/epoxy
laminae [Diaconu et al., 2002]

E1 25E2

G12 = G13 0.5E2

G23 0.2E2

ν12 0.25

ρ(kg/m3) 1.6

5.2.1 Maximization of the 1st Natural Frequency

The results for the maximization of fundamental frequency ω1 are presented in this

sub–section. Initially, the results are obtained for simply–supported flat panels and

compared with the ones from [Abdalla et al., 2007]. Table 5.2 shows the maximum

fundamental frequency parameters for the constant–stiffness and variable–stiffness

laminates (ωcs1 and ωvs1 ) for different panel aspect ratios. The results show that the

constant–stiffness frequency values agree well with each other which can be regarded

as a validation. For square panels, no improvement is observed using variable–stiffness

approach. For the a/b ratio of 1.5, variable–stiffness frequencies significantly surpass

the constant–stiffness values. When a/b is further increased to 2.0, the effectiveness

of variable–stiffness designs decreases. This trend highlights the significant influence

of aspect ratio on the potency of variable–stiffness concept. The present variable–

stiffness approach provides lesser improvement percentages compared to the one used
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in [Abdalla et al., 2007], since the manufacturability is disregarded in the latter study

which aimed to investigate the theoretical limits.

Table 5.2: Maximum fundamental frequency parameters:
ω1 = ω1(b2/h)

√
ρ/E2 for simply–supported flat panels.

a/b ωcs1 ωvs1 % imp. ωcs1 ωvs1 % imp.

[Abdalla et al., 2007] Present FEM

1.0 20.57 20.57 0.00 20.55 20.55 0.00

1.5 14.83 16.50 11.24 15.08 15.91 5.50

2.0 14.46 15.37 6.29 14.49 14.70 1.45

In Table 5.3, the optimal results yielding the maximum fundamental frequency

are tabulated for simply–supported flat panels with different aspect ratios. Note

that the optimal lamination parameter pairs at the master nodes are the same for

the square panels (a/b = 1.0) leading to constant–stiffness design. For the variable–

stiffness designs, Rl is 1.0 and Rr is 0.0, implying that the optimal laminates consist of

only θl–layers. Figure 5.7 shows the optimal variable–stiffness lamination parameter

distributions and corresponding discrete fiber angles/fiber paths for simply–supported

flat panels with different aspect ratios. The optimal results are not visualized when

they lead to constant–stiffness laminates, since the lamination parameters and the

fiber angles do not change across the panels in those cases.

Table 5.3: Optimal results yielding maximum ω1 for simply–supported panels with
a/r = 0.0 (flat panels).

a/b ωcs1 ωvs1 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 20.55 20.55 0.0 N.A. N.A. (0.0, -1.0) (0.0, -1.0) (45◦, 45◦) (45◦, 45◦)

1.5 15.08 15.91 5.50 1.0 0.0 (0.0, -1.0) (-1.0, 1.0) (45◦, 45◦) (90◦, 0◦)

2.0 14.49 14.70 1.45 1.0 0.0 (0.0, -1.0) (-1.0, 1.0) (45◦, 45◦) (90◦, 0◦)
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Figure 5.7: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω1 for simply–supported panels with a/r =
0.0.

Table 5.4 and Figure 5.8 show the optimal results yielding maximum ω1 for simply–

supported panels with a/r = 0.2 and the optimal lamination parameter distributions

with the corresponding discrete fiber angles/fiber paths, respectively. When a/r ratio

is 0.2, the effectiveness trend of variable–stiffness methodology notably changes as it

provides the highest performance increment for a/b = 1.0 and the lowest one for a/b =

Table 5.4: Optimal results yielding maximum ω1 for simply–supported panels with
a/r = 0.2.

a/b ωcs1 ωvs1 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 62.15 64.45 3.70 0.0 1.0 (0.0, -1.0) (1.0, 1.0) (45◦, 45◦) (90◦, 0◦)

1.5 33.64 34.04 1.19 0.0 1.0 (0.0, -1.0) (0.87, 0.5) (45◦, 45◦) (75◦, 15◦)

2.0 21.06 21.40 1.61 0.0 1.0 (0.55, -0.4) (1.0, 1.0) (62◦, 28◦) (90◦, 0◦)
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Figure 5.8: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω1 for simply–supported panels with a/r =
0.2.

1.5. When the panel curvature is further increased to a/r = 0.5, variable–stiffness

frequencies do not significantly exceed constant–stiffness values (the difference is below

1%), therefore the results are not presented for those cases.

For clamped panels of lower a/r ratios (0.0, 0.2), the proposed formulation with

2 master nodes did not provide any significant improvements except the flat square

panel where almost 5% improvement is achieved. Table 5.5 and Figure 5.9 show

the optimal results yielding maximum ω1 for clamped flat panels and the optimal
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lamination parameter distributions with the corresponding discrete fiber angles/fiber

paths, respectively.

Table 5.5: Optimal results yielding maximum ω1 for clamped panels with a/r = 0.0
(flat panels).

a/b ωcs1 ωvs1 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 33.37 35.01 4.91 1.0 0.0 (-1.0, 1.0) (0.0, -1.0) (90◦, 0◦) (45◦, 45◦)

1.5 32.27 32.27 0.00 1.0 0.0 (-1.0, 1.0) (-1.0, 1.0) (90◦, 0◦) (90◦, 0◦)

2.0 31.87 31.87 0.00 1.0 0.0 (-1.0, 1.0) (-1.0, 1.0) (90◦, 0◦) (90◦, 0◦)

Figure 5.9: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω1 for clamped panels with a/r = 0.0.

When the a/r ratio of the clamped panels is increased to 0.5, variable–stiffness de-

signs yield substantial improvements in the maximum ω1 values which can be seen in

Table 5.6 showing the optimal results. In Fig. 5.10, the optimal lamination parame-

ter distributions with the corresponding discrete fiber angles/fiber paths for clamped

panels with a/r = 0.5 are presented. The results indicate that, the a/r values at

which variable–stiffness formulation is effective in fundamental frequency maximiza-

tion differ according to the boundary conditions. This result is in accordance with the

trend of fundamental vibration mode switching, which occurs at smaller curvatures
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for simply–supported panels and at higher curvatures for clamped panels [Serhat and

Basdogan, 2018]. Therefore, the effectiveness of the proposed optimization method

may change depending on the boundary conditions and the corresponding vibration

mode shapes.

Table 5.6: Optimal results yielding maximum ω1 for clamped panels with a/r = 0.5.

a/b ωcs1 ωvs1 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 103.6 108.5 4.73 0.0 1.0 (0.0, -1.0) (0.98, 0.9) (45◦, 45◦) (84◦, 6◦)

1.5 58.79 61.39 4.42 0.0 1.0 (0.0, -1.0) (0.81, 0.3) (45◦, 45◦) (72◦, 18◦)

2.0 39.67 41.67 5.09 0.0 1.0 (0.0, -1.0) (0.92, 0.7) (45◦, 45◦) (79◦, 11◦)

5.2.2 Maximization of the Difference between the 1st and 2nd Natural Frequencies

In this sub–section, the results for the maximization of frequency difference between

the first and second natural frequencies (ω21 = ω2−ω1) are presented. Table 5.7 and

Figure 5.11 show the optimal results yielding maximum ω21 for simply–supported flat

panels and the optimal lamination parameter distributions with the corresponding

discrete fiber angles/fiber paths, respectively. In this case, the influence of aspect

ratio on the effectiveness variable–stiffness methodology is similar to the fundamental

frequency maximization of simply–supported flat panels. When a/b is increased to 1.5,

the variable–stiffness design outperforms the constant stiffness one, providing over 3%

increase in the maximum frequency difference. For a/b = 2.0, the variable–stiffness

frequency difference still exceeds the constant–stiffness value, but the performance

increment reduces to below 3%.

In Table 5.8 and Fig. 5.12 the optimal results yielding maximum ω21 for simply–

supported panels with a/r = 0.2 and the optimal lamination parameter distributions

with the corresponding discrete fiber angles/fiber paths are presented, respectively.

The results for this case show that, variable–stiffness frequencies exceed constant–

stiffness ones for a/b = 1.0 and a/b = 2.0, but no improvement occurs for a/b = 1.5.
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Figure 5.10: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω1 for clamped panels with a/r = 0.5.

Table 5.7: Optimal results yielding maximum ω21 for simply–supported panels with
a/r = 0.0 (flat panels).

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 28.29 28.29 0.00 N.A.N.A.(0.0, -1.0) (0.0, -1.0) (45◦, 45◦) (45◦, 45◦)

1.5 16.18 16.69 3.15 0.0 1.0 (0.0, -1.0) (0.78, 0.2) (45◦, 45◦) (70◦, 20◦)

2.0 10.13 10.41 2.76 0.0 1.0 (0.45, -0.6) (1.0, 1.0) (58◦, 32◦) (90◦, 0◦)
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Figure 5.11: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for simply–supported panels with
a/r = 0.0.

Table 5.8: Optimal results yielding maximum ω21 for simply–supported panels with
a/r = 0.2.

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 19.49 19.91 2.15 0.1 0.9 (0.8, 1.0) (0.54, -0.1) (90◦, 0◦) (66◦, 24◦)

1.5 10.79 10.79 0.00 0.1 0.9 (0.8, 1.0) (0.8, 1.0) (90◦, 0◦) (90◦, 0◦)

2.0 6.26 6.37 1.76 1.0 0.0 (0.0, -1.0) (-0.22, -0.9) (45◦, 45◦) (51◦, 39◦)

For simply–supported panels with a/r = 0.5 optimal results yielding maximum

ω21 are presented in Table 5.9. For this curvature value, variable–stiffness design

outperformed the constant–stiffness one only for square panels. Figure 5.13 shows

the optimal lamination parameter distributions with the corresponding discrete fiber

angles/fiber paths for this case.
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Figure 5.12: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for simply–supported panels with
a/r = 0.2.

Table 5.9: Optimal results yielding maximum ω21 for simply–supported panels with
a/r = 0.5.

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 41.38 42.36 2.37 0.0 1.0 (0.95, 0.8) (0.81, 0.3) (81◦, 9◦) (72◦, 18◦)

1.5 19.80 19.80 0.00 0.15 0.85 (0.7, 1.0) (0.7, 1.0) (90◦, 0◦) (90◦, 0◦)

2.0 10.93 10.93 0.00 0.0 1.0 (1.0, 1.0) (1.0, 1.0) (90◦, 0◦) (90◦, 0◦)

For clamped flat panels, the optimal results providing maximum ω21 and the

optimal lamination parameter distributions with the corresponding discrete fiber an-

gles/fiber paths are presented in Table 5.10 and Fig. 5.14, respectively. In this case,

variable–stiffness frequencies slightly exceed the constant–stiffness ones for a/b = 1.5

and a/b = 2.0. However, no improvement is achieved for square panels.
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Figure 5.13: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for simply–supported panels with
a/r = 0.5.

Table 5.10: Optimal results yielding maximum ω21 for clamped panels with a/r = 0.0
(flat panels).

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 16.87 17.32 2.67 1.0 0.0 (0.0, -1.0) (-0.22, -0.9) (45◦, 45◦) (52◦, 38◦)

1.5 10.74 11.38 5.96 0.0 1.0 (0.55, -0.4) (0.0, -1.0) (62◦, 28◦) (45◦, 45◦)

2.0 12.62 12.83 1.66 0.0 1.0 (0.74, 0.0) (1.0, 1.0) (68◦, 22◦) (45◦, 45◦)

Table 5.11 shows the optimal results yielding maximum ω21 for clamped panels

with a/r = 0.2. In this case, the variable–stiffness methodology performs effectively

for all the aspect ratios. When a/b is 1.5, variable–stiffness frequency difference is

almost 6% higher than the constant–stiffness one. The optimal lamination parameter

distributions with the corresponding discrete fiber angles/fiber for clamped panels

with a/r = 0.2 are presented in Fig. 5.15.
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Figure 5.14: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for clamped panels with a/r = 0.0.

Table 5.11: Optimal results yielding maximum ω21 for clamped panels with a/r = 0.2.

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 41.38 42.36 2.37 0.0 1.0 (0.95, 0.8) (0.81, 0.3) (45◦, 45◦) (52◦, 39◦)

1.5 19.80 19.80 0.00 0.150.85(0.71, 0.0) (0.0, -1.0) (62◦, 28◦) (45◦, 45◦)

2.0 10.93 10.93 0.00 0.0 1.0 (1.0, 1.0) (0.0, -1.0) (78◦, 22◦) (45◦, 45◦)

Table 5.12 shows the optimal results yielding maximum ω21 for clamped panels

with a/r = 0.5. In this case, the variable–stiffness design method found to be effective

only for a/b = 1.0 similar to simply–supported boundary conditions. Figure 5.16

shows the optimal lamination parameter distributions with the corresponding discrete

fiber angles/fiber paths for clamped square panels with a/r = 0.5.
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Figure 5.15: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for clamped panels with a/r = 0.2.

Table 5.12: Optimal results yielding maximum ω21 for clamped panels with a/r = 0.5.

a/b ωcs21 ωvs21 % imp. Rl Rr (V1, V3)1 (V1, V3)2 (θl, θr)
1 (θl, θr)

2

1.0 39.44 40.69 3.17 0.0 1.0 (0.98, 0.9) (0.63, -0.2) (84◦, 6◦) (65◦, 25◦)

1.5 20.44 20.44 0.00 0.150.85 (0.7, 1.0) (0.7, 1.0) (90◦, 0◦) (90◦, 0◦)

2.0 11.73 11.73 0.00 0.0 1.0 (1.0, 1.0) (1.0, 1.0) (90◦, 0◦) (90◦, 0◦)
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Figure 5.16: Optimal lamination parameter distributions and corresponding discrete
fiber angles/fiber paths yielding maximum ω21 for clamped panels with a/r = 0.5.



Chapter 6

CONCLUSIONS

In this thesis, novel techniques for the design and optimization of nonconven-

tional laminated composite panels were developed. Lamination parameters method is

used to characterize laminate stiffness matrices in a compact form. An optimization

framework based on finite element analysis was developed to calculate the solutions

for different panel geometries, boundary conditions and load cases. The contributions

of the study can be summarized in three main parts.

Firstly, a multi-objective design methodology was presented for maximizing the

fundamental frequency, buckling load and effective stiffness of laminated composite

plates. Multi-objective optimization solutions were computed in lamination parame-

ter domain for different combinations of design objectives. Initially, the responses for

individual performance metrics were obtained as a function of lamination parameters

and single-objective optimal designs were determined. Then, multi-objective opti-

mization studies were performed where the trends of the objective functions with re-

spect to design variables were observed to be conflicting for several problem types. For

these cases, Pareto-optimal solutions were calculated to obtain sets of non-dominated

designs. The distributions of Pareto sets on lamination parameter space were pre-

sented which are notably informative for multi-objective optimization studies. The

results showed that, even though individual optimum solutions lie on the boundary of

Miki’s diagram, Pareto-optimal solutions do not necessarily follow this trend. There-

fore, searching the interior region of the feasible domain is particularly important

in multi-objective optimization problems. The values of the fundamental frequency,

buckling load and effective stiffness metrics at the optimal point of each metric were

also investigated. The analyses revealed that the optimal solutions for different per-
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formance metrics could strongly conflict with each other, as the increase in a certain

metric could lead to a significant decrease in another one. This result demonstrated

the importance of finding Pareto sets for multi-objective laminate optimization prob-

lems to detect all the optimal solution candidates and find the best compromise among

them.

Secondly, the design of curved laminated composite panels for optimal dynamic

response was studied in detail. Various aspect ratios, panel curvatures and boundary

conditions were considered to investigate the individual and combined effects of model

parameters on dynamic responses. Initially, fundamental frequency contours were ob-

tained in lamination parameter domain. For curved panels, such results were acquired

for the first time in the literature. The maximum frequency points were regarded as

the optimal designs. The stiffening effect of high curvature dominated over the in-

fluence of aspect ratio and boundary conditions. In addition, vibration mode shapes

were observed to strongly influence the fundamental frequency contours. Following

fundamental frequency maximization, optimal lamination parameters that minimize

equivalent radiated power (ERP ) of the panels subject to harmonic pressure excita-

tion were investigated. In several cases, resonance bands formed in the ERP contours.

This demonstrated that, the surfaces of frequency–response quantities in lamination

parameters space can be non–convex, unlike natural frequency. For relatively low

excitation frequencies, optimum design points providing minimum ERP were found

to be the same as maximum fundamental frequency points, if the fundamental vibra-

tion mode half–waves numbers in the x and y–directions are both one. Therefore,

frequency maximization technique is effective in minimizing forced dynamic response

under certain conditions. When the excitation frequency was increased, the optimum

points changed drastically for certain panel models.

In the last part, a new variable–stiffness laminate design approach that consid-

ers the manufacturability was presented. The proposed method is based on using

master nodes and constrained interpolation of lamination parameter variables. The

values at the master nodes are optimized to obtain the best lamination parameter
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distributions maximizing the chosen performance metric. The interpolation approach

ensures the optimal lamination parameter distributions to change smoothly through

the panel. In the next step, the discrete fiber angles are retrieved using the elemental

lamination parameters. The fiber angle distributions inherit the smoothness property

of the optimal lamination parameter distributions. The fiber paths required for the

manufacturing process are obtained from the discrete fiber angle distributions using

stream functions. These fiber paths also change smoothly through the panel con-

forming to the fiber angle distributions. The proposed method was utilized for the

maximization of two different panel responses: fundamental natural frequency and the

difference between the first and the second frequencies. Various cases with different

model parameters including panel aspect ratios, curvatures and boundary conditions

were investigated. For all the considered cases, the presented method could generate

smooth fiber paths corresponding to the optimal lamination parameter distributions.

The focus of this work was on building an efficient optimization framework and

providing the necessary methodologies for the design of nonconventional composite

plates. The proposed methods were shown to be effective and they provided signifi-

cantly informative results. In the future studies, these techniques can be utilized to

investigate laminate design problems involving various panel geometries, boundary

conditions, load cases and performance metrics.
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